Generalized Cahn-Hilliard equation for biological applications
نویسندگان
چکیده
منابع مشابه
On a Generalized Cahn-hilliard Equation with Biological Applications
In this paper, we are interested in the study of the asymptotic behavior of a generalization of the Cahn-Hilliard equation with a proliferation term and endowed with Neumann boundary conditions. Such a model has, in particular, applications in biology. We show that either the average of the local density of cells is bounded, in which case we have a global in time solution, or the solution blows...
متن کاملThe Cahn-hilliard Equation
1. Steady states. There are many two component systems in which phase separation can be induced by rapidly cooling the system. Thus, if a two component system, which is spatially uniform at temperature T1, is rapidly cooled to a second sufficiently lower temperature T2, then the cooled system will separate into regions of higher and lower concentration. A phenomenological description of the beh...
متن کاملA generalized Cahn–Hilliard equation incorporating geometrically linear elasticity
We consider a generalisation of the Cahn–Hilliard equation that incorporates an elastic energy density which, being quasiconvex, incorporates microstructure formation on smaller length scales. We prove global existence of weak solutions in certain microstructural regimes in (one and) two dimensions and present sufficient conditions for uniqueness. Preliminary numerical computations to illustrat...
متن کاملThe convective Cahn-Hilliard equation
We consider the convective Cahn–Hilliard equation with periodic boundary conditions as an infinite dimensional dynamical system and establish the existence of a compact attractor and a finite dimensional inertial manifold that contains it. Moreover, Gevrey regularity of solutions on the attractor is established and used to prove that four nodes are determining for each solution on the attractor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2008
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.77.051129